

Welcome to django-feed-reader’s documentation!

Contents:

	Django Feed Reader
	Features

	Installation

	Basic Models

	Refreshing feeds

	Polling with cron

	Polling with celery

	Tracking read/unread state of feeds

	Cloudflare Busting

	Commands

	Models
	Source

	Post

	Enclosure

	Subscription

	Utils

Indices and tables

	Index

	Module Index

	Search Page

Django Feed Reader

This is a simple Django module to allow you subscribe to RSS (and other) feeds.

This app has no UI, it just reads and stores the feeds for you to use as you see fit.

This app builds on top of the FeedParser library to provide feed management, storage, scheduling etc.

Features

	Consumes RSS, Atom and JSONFeed feeds.

	Parses feeds liberally to try and accomodate simple errors.

	Will attempt to bypass Cloudflare protection of feeds

	Supports enclosure (podcast) discovery

	Automatic feed scheduling based on frequency of updates

Installation

django-feed-reader is written in Python 3 and supports Django 2.2+

	pip install django-feed-reader

	Add feeds to your INSTALLED_APPS

	
	Setup some values in settings.py so that your feed reader politely announces itself to servers
	
	Set FEEDS_USER_AGENT to the name and (optionally version) of your service e.g. "ExampleFeeder/1.2"

	Set FEEDS_SERVER to preferred web address of your service so that feed hosts can locate you if required e.g. https://example.com

	Setup a mechanism to periodically refresh the feeds (see below)

Optional Settings

	
	FEEDS_VERIFY_HTTPS (Default True)
	
	Older versions of this library did not verify https connections when fetching feeds.
Set this to False to revert to the old behaviour.

	
	KEEP_OLD_ENCLOSURES (Default False)
	
	Some feeds (particularly podcasts with Dynamic Ad Insertion) will change their enclosure
urls between reads. By default, old enclosures are deleted and replaced with new ones.
Set this to true, to retain old enclosures - they will have their is_current flag
set to False

	
	SAVE_JSON (Default False)
	
	If set, Sources and Posts will store a JSON representation of the all the data retrieved
from the feed so that uncommon or custom attributes can be retrieved. Caution - this will
dramatically increase tha amount of space used in your database.

	
	DRIPFEED_KEY (Default None)
	
	If set to a valid Dripfeed API Key, then feeds that are blocked by Cloudflare will
be automatically polled via Dripfeed [https://dripfeed.app] instead.

Basic Models

A feed is represented by a Source object which has (among other things) a feed_url.

To start reading a feed, simply create a new Source with the desired feed_url

Source objects have Post children which contain the content.

A Post may have Enclosure (or more) which is what podcasts use to send their audio.
The app does not download enclosures, if you want to do that you will need to do that in your project
using the url provided.

Refreshing feeds

To conserve resources with large feed lists, the module will adjust how often it polls feeds
based on how often they are updated. The fastest it will poll a feed is every hour. The
slowest it will poll is every 24 hours.

Sources that don’t get updated are polled progressively more slowly until the 24 hour limit is
reached. When a feed changes, its polling frequency increases.

You will need to decided how and when to run the poller. When the poller runs, it checks all
feeds that are currently due. The ideal frequency to run it is every 5 - 10 minutes.

Polling with cron

Set up a job that calls python manage.py refreshfeeds on your desired schedule.

Be careful to ensure you’re running out of the correct directory and with the correct python environment.

Polling with celery

Create a new celery task and schedule in your app (see the celery documentation for details). Your tasks.py should look something like this:

from celery import shared_task
from feeds.utils import update_feeds

@shared_task
def get_those_feeds():

 # the number is the max number of feeds to poll in one go
 update_feeds(30)

Tracking read/unread state of feeds

There are two ways to track the read/unread state of feeds depending on your needs.

Single User Installations

If your usage is just for a single user, then there are helper methods on a Source
to track your read state.

All posts come in unread. You can get the current number of unread posts from
Source.unread_count.

To get a ResultSet of all the unread posts from a feed call Source.get_unread_posts

To mark all posts on a fed as read call Source.mark_read

To get all of the posts in a feed regardless of read status, a page at a time call
Source.get_paginated_posts which returns a tuple of (Posts, Paginator)

Multi-User Installations

To allow multiple users to follow the same feed with individual read/unread status,
create a new Subscription for that Source and User.

Subscription has the same helper methods for retrieving posts and marking read as
Source.

You can also arrange feeds into a folder-like hierarchy using Subscriptions.
Every Subscription has an optional parent. Subscriptions with a None parent
are considered at the root level. By convention, Subscriptions that are acting as parent
folders should have a None source

Subscriptions have a name field which by convention should be a display name if it is
a folder or the name of the Source it is tracking. However this can be set to any
value if you want to give a personally-meaningful name to a feed who’s name is cryptic.

There are two helper methods in the utils module to help manage subscriptions as folders.
get_subscription_list_for_user will return all Subscriptions for a User where the
parent is None. get_unread_subscription_list_for_user will do the same but only returns
Subscriptions that are unread or that have unread children if they are a folder.

Cloudflare Busting

django-feed-reader has Dripfeed support built in. If a feed becomes blocked by Cloudflare
it can be polled via Dripfeed instead. This requires a Dripfeed [https://dripfeed.app]
account and API key.

Commands

Commands that django-feed-reader adds to Django

Models

	
class feeds.models.Source(*args, **kwargs)

	This class represents a Feed to be read.

It really should have been called Feed, but what can you do?

	
name

	str The name of the Feed (automatically populated)

	
site_url

	str url of the website associated with the feed (automatically populated)

	
feed_url

	str The URL that will be fetched to read the feed

	
image_url

	str The url of an image representing the feed (automatically populated)

	
description

	str The site description: may be HTML, be careful (automatically populated)

	
last_polled

	datetime The last time the Feed was fetched

	
due_poll

	datetime When the Feed is next due to be fetched

	
last_result

	str The result the last fetch

	
interval

	int How often the Feed will be fetched in minutes

	
last_success

	datetime When the Feed was last read successfully

	
last_change

	datetime When the Feed last changed

	
live

	bool Is the Feed being actively fetched

	
json

	dict Raw information about the Feed in JSON format (will not be collected unless FEEDS_SAVE_JSON is set to True in settings)

	
is_cloudflare

	bool Is this feed being hindered bt Cloudflare?

	
property subscriber_count: int

	int he number of subscribers this feed has

	
property unread_count: int

	int In a single user system how many unread articles are there?

If you need more than one user, or want to arrange feeds
into folders, use a Subscription

	
property best_link: str

	str The best user facing link to this feed.

Will be the site_url if it’s present, otherwise feed_url

	
property display_name: str

	str The best user-facing name for this feed.

Will be the the feed’s name as described in the feed if there is one.
Otherwise it will be the best_link

	
get_unread_posts(newest_first=True)

	List[Post] In a single user system get all unread posts

If you need more than one user, or want to arrange feeds
into folders, use a Subscription

	Parameters:

	newest_first (bool)

	Return type:

	list

	
get_paginated_posts(page, newest_first=True, posts_per_page=20)

	Get a posts from the feed a page at a time

	Parameters:

	
	page (int) – The page to fetch.

	oldest_first (bool) – Get the posts in reverse chronological order (default True)

	posts_per_page (int) – The number of posts per page (default 20)

	newest_first (bool)

	Returns:

	A tuple containting the page of posts and the paginator

	Return type:

	Tuple[List[Post], Paginator]

	
mark_read()

	In a single user system, mark this feed as read

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class feeds.models.Post(*args, **kwargs)

	An entry in a feed

	
source

	Source The source feed that this post belongs to

	
title

	str The post title

	
body

	str The main content of the feed in html or plain text

	
link

	str Link to this post on the web

	
found

	datetime When this post was first discovered

	
created

	datetime The created date for this post as reported in the feed

	
guid

	str The unique ID for this post

	
author

	str Name of the author of this post as reported by the feed

	
index

	int The number of this post in the feed for the purposes of tracking read/unread state

	
image_url

	str The URL of an image that represents this post

	
json

	dict Raw information about the Post in JSON format (will not be collected unless FEEDS_SAVE_JSON is set to True in settings)

	
property current_enclosures

	ResultSet[Enclosure] Returns all the current enclosures for this post

	
property old_enclosures

	ResultSet[Enclosure] Returns all the previous enclosures for this post

Some feeds change the URL of enclosures between reads. By default
old enclosures are deleted and new ones added each time the feed is polled.
To keep references to old enclosures set FEEDS_KEEP_OLD_ENCLOSURES to True
in settings.

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class feeds.models.Enclosure(*args, **kwargs)

	An enclosure on a post

	
post

	Post The Post that this Enclosure belongs to

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
length

	int Size in bytes of the the related file

	
href

	url The url of the enclosure

	
type

	str The type of the enclosure

	
medium

	str The type of the enclosure. Almost certainly one of image/video/audio

	
description

	str A description of the enclosure - e.g. Alt text on an image

	
is_current

	bool Is this enclosure current (if we are saving old enclosures - see above).

	
property is_image

	bool Is the enclosure an image?

	
property is_audio

	bool Is the enclosure audio?

	
property is_video

	bool Is the enclosure video?

	
class feeds.models.Subscription(*args, **kwargs)

	A subscription to a Source Feed by a User

Subscriptions are also the way folder structures are set up

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
user

	User The owner of the Subscription

	
source

	Source The source feed of the subscription. If this is None then this is actually a folder

	
parent

	Subscription The parent folder of the subscription. None if the subscription is at the root leve

	
is_river

	bool Indicates if the feed/folder should be displayed in a “River of News” style

	
name

	str The display name of the subscription - typically should be set to the name of the source where present

	
property unread_count: int

	int The number of undread posts in teh subscription

If the subscription is acting as a folder, this will total
up the unread counts of all children

	
get_unread_posts(oldest_first=True)

	Returns all the unread posts in a subscription

	
get_paginated_posts(page, oldest_first=True, posts_per_page=20)

	Get a posts from the feed a page at a time

	Parameters:

	
	page (int) – The page to fetch.

	posts_per_page (int) – The number of posts per page (default 20)

	oldest_first (bool)

	Returns:

	A tuple containting the page of posts and the paginator

	Return type:

	Tuple[List[Post], Paginator]

	
mark_read()

	Marks all the posts in the subscription as read

If the subscription is acting as a folder then it will mark all
children as read as well.

Utils

This module contains useful utility functions for manipulating your feeds.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | S
 | T
 | U

A

 	
 	author (feeds.models.Post attribute)

B

 	
 	best_link (feeds.models.Source property)

 	
 	body (feeds.models.Post attribute)

C

 	
 	created (feeds.models.Post attribute)

 	
 	current_enclosures (feeds.models.Post property)

D

 	
 	description (feeds.models.Enclosure attribute)

 	(feeds.models.Source attribute)

 	
 	display_name (feeds.models.Source property)

 	due_poll (feeds.models.Source attribute)

E

 	
 	Enclosure (class in feeds.models)

 	
 	Enclosure.DoesNotExist

 	Enclosure.MultipleObjectsReturned

F

 	
 	feed_url (feeds.models.Source attribute)

 	
 	found (feeds.models.Post attribute)

G

 	
 	get_paginated_posts() (feeds.models.Source method)

 	(feeds.models.Subscription method)

 	
 	get_unread_posts() (feeds.models.Source method)

 	(feeds.models.Subscription method)

 	guid (feeds.models.Post attribute)

H

 	
 	href (feeds.models.Enclosure attribute)

I

 	
 	image_url (feeds.models.Post attribute)

 	(feeds.models.Source attribute)

 	index (feeds.models.Post attribute)

 	interval (feeds.models.Source attribute)

 	is_audio (feeds.models.Enclosure property)

 	
 	is_cloudflare (feeds.models.Source attribute)

 	is_current (feeds.models.Enclosure attribute)

 	is_image (feeds.models.Enclosure property)

 	is_river (feeds.models.Subscription attribute)

 	is_video (feeds.models.Enclosure property)

J

 	
 	json (feeds.models.Post attribute)

 	(feeds.models.Source attribute)

L

 	
 	last_change (feeds.models.Source attribute)

 	last_polled (feeds.models.Source attribute)

 	last_result (feeds.models.Source attribute)

 	
 	last_success (feeds.models.Source attribute)

 	length (feeds.models.Enclosure attribute)

 	link (feeds.models.Post attribute)

 	live (feeds.models.Source attribute)

M

 	
 	mark_read() (feeds.models.Source method)

 	(feeds.models.Subscription method)

 	
 	medium (feeds.models.Enclosure attribute)

N

 	
 	name (feeds.models.Source attribute)

 	(feeds.models.Subscription attribute)

O

 	
 	old_enclosures (feeds.models.Post property)

P

 	
 	parent (feeds.models.Subscription attribute)

 	Post (class in feeds.models)

 	
 	post (feeds.models.Enclosure attribute)

 	Post.DoesNotExist

 	Post.MultipleObjectsReturned

S

 	
 	save() (feeds.models.Post method)

 	site_url (feeds.models.Source attribute)

 	Source (class in feeds.models)

 	source (feeds.models.Post attribute)

 	(feeds.models.Subscription attribute)

 	
 	Source.DoesNotExist

 	Source.MultipleObjectsReturned

 	subscriber_count (feeds.models.Source property)

 	Subscription (class in feeds.models)

 	Subscription.DoesNotExist

 	Subscription.MultipleObjectsReturned

T

 	
 	title (feeds.models.Post attribute)

 	
 	type (feeds.models.Enclosure attribute)

U

 	
 	unread_count (feeds.models.Source property)

 	(feeds.models.Subscription property)

 	
 	user (feeds.models.Subscription attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to django-feed-reader’s documentation!

 		
 Django Feed Reader

 		
 Features

 		
 Installation

 		
 Optional Settings

 		
 Basic Models

 		
 Refreshing feeds

 		
 Polling with cron

 		
 Polling with celery

 		
 Tracking read/unread state of feeds

 		
 Single User Installations

 		
 Multi-User Installations

 		
 Cloudflare Busting

 		
 Commands

 		
 Models

 		
 Source

 		
 Source.name

 		
 Source.site_url

 		
 Source.feed_url

 		
 Source.image_url

 		
 Source.description

 		
 Source.last_polled

 		
 Source.due_poll

 		
 Source.last_result

 		
 Source.interval

 		
 Source.last_success

 		
 Source.last_change

 		
 Source.live

 		
 Source.json

 		
 Source.is_cloudflare

 		
 Source.subscriber_count

 		
 Source.unread_count

 		
 Source.best_link

 		
 Source.display_name

 		
 Source.get_unread_posts()

 		
 Source.get_paginated_posts()

 		
 Source.mark_read()

 		
 Source.DoesNotExist

 		
 Source.MultipleObjectsReturned

 		
 Post

 		
 Post.source

 		
 Post.title

 		
 Post.body

 		
 Post.link

 		
 Post.found

 		
 Post.created

 		
 Post.guid

 		
 Post.author

 		
 Post.index

 		
 Post.image_url

 		
 Post.json

 		
 Post.current_enclosures

 		
 Post.old_enclosures

 		
 Post.save()

 		
 Post.DoesNotExist

 		
 Post.MultipleObjectsReturned

 		
 Enclosure

 		
 Enclosure.post

 		
 Enclosure.DoesNotExist

 		
 Enclosure.MultipleObjectsReturned

 		
 Enclosure.length

 		
 Enclosure.href

 		
 Enclosure.type

 		
 Enclosure.medium

 		
 Enclosure.description

 		
 Enclosure.is_current

 		
 Enclosure.is_image

 		
 Enclosure.is_audio

 		
 Enclosure.is_video

 		
 Subscription

 		
 Subscription.DoesNotExist

 		
 Subscription.MultipleObjectsReturned

 		
 Subscription.user

 		
 Subscription.source

 		
 Subscription.parent

 		
 Subscription.is_river

 		
 Subscription.name

 		
 Subscription.unread_count

 		
 Subscription.get_unread_posts()

 		
 Subscription.get_paginated_posts()

 		
 Subscription.mark_read()

 		
 Utils

_static/file.png

_static/minus.png

_static/plus.png

